Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
JMIR Res Protoc ; 13: e50568, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536234

RESUMEN

BACKGROUND: Diabetic eye screening (DES) represents a significant opportunity for the application of machine learning (ML) technologies, which may improve clinical and service outcomes. However, successful integration of ML into DES requires careful product development, evaluation, and implementation. Target product profiles (TPPs) summarize the requirements necessary for successful implementation so these can guide product development and evaluation. OBJECTIVE: This study aims to produce a TPP for an ML-automated retinal imaging analysis software (ML-ARIAS) system for use in DES in England. METHODS: This work will consist of 3 phases. Phase 1 will establish the characteristics to be addressed in the TPP. A list of candidate characteristics will be generated from the following sources: an overview of systematic reviews of diagnostic test TPPs; a systematic review of digital health TPPs; and the National Institute for Health and Care Excellence's Evidence Standards Framework for Digital Health Technologies. The list of characteristics will be refined and validated by a study advisory group (SAG) made up of representatives from key stakeholders in DES. This includes people with diabetes; health care professionals; health care managers and leaders; and regulators and policy makers. In phase 2, specifications for these characteristics will be drafted following a series of semistructured interviews with participants from these stakeholder groups. Data collected from these interviews will be analyzed using the shortlist of characteristics as a framework, after which specifications will be drafted to create a draft TPP. Following approval by the SAG, in phase 3, the draft will enter an internet-based Delphi consensus study with participants sought from the groups previously identified, as well as ML-ARIAS developers, to ensure feasibility. Participants will be invited to score characteristic and specification pairs on a scale from "definitely exclude" to "definitely include," and suggest edits. The document will be iterated between rounds based on participants' feedback. Feedback on the draft document will be sought from a group of ML-ARIAS developers before its final contents are agreed upon in an in-person consensus meeting. At this meeting, representatives from the stakeholder groups previously identified (minus ML-ARIAS developers, to avoid bias) will be presented with the Delphi results and feedback of the user group and asked to agree on the final contents by vote. RESULTS: Phase 1 was completed in November 2023. Phase 2 is underway and expected to finish in March 2024. Phase 3 is expected to be complete in July 2024. CONCLUSIONS: The multistakeholder development of a TPP for an ML-ARIAS for use in DES in England will help developers produce tools that serve the needs of patients, health care providers, and their staff. The TPP development process will also provide methods and a template to produce similar documents in other disease areas. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50568.

2.
Lancet Microbe ; 4(11): e875-e882, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37844595

RESUMEN

BACKGROUND: Rapid antigen tests (RATs) were crucial during the COVID-19 pandemic. Information provided by the test manufacturer in product package inserts, also known as instructions for use (IFUs), is often the only data available to clinicians, public health professionals, and individuals on the diagnostic accuracy of these tests. We aimed to assess whether manufacturer IFU accuracy data aligned with evidence from independent research. METHODS: We searched company websites for package inserts for RATs that were included in the July 2022 update of the Cochrane meta-analysis of SARS-CoV-2 RATs, which served as a benchmark for research evidence. We fitted bivariate hierarchical models to obtain absolute differences in sensitivity and specificity between IFU and Cochrane Review estimates for each test, as well as overall combined differences. FINDINGS: We found 22 (100%) of 22 IFUs of the RATs included in the Cochrane Review. IFUs for 12 (55%) of 22 RATs reported statistically significantly higher sensitivity estimates than the Cochrane Review, and none reported lower estimates. The mean difference between IFU and Cochrane Review sensitivity estimates across tests was 12·0% (95% CI 7·5-16·6). IFUs in three (14%) of 22 diagnostic tests had significantly higher specificity estimates than the Cochrane Review and two (9%) of 22 had lower estimates. The mean difference between IFU and Cochrane Review specificity estimates across tests was 0·3% (95% CI 0·1-0·5). If 100 people with SARS-CoV-2 infection were tested with each of the tests in this study, on average 12 fewer people would be correctly diagnosed than is suggested by the package inserts. INTERPRETATION: Health professionals and the public should be aware that package inserts for SARS-CoV-2 RATs might provide an overly optimistic picture of the sensitivity of a test. Regulatory bodies should strengthen their requirements for the reporting of diagnostic accuracy data in package inserts and policy makers should demand independent validation data for decision making. FUNDING: None.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Etiquetado de Productos , Sensibilidad y Especificidad , Revisiones Sistemáticas como Asunto
5.
BMC Med ; 21(1): 110, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36978074

RESUMEN

BACKGROUND: The global spread of COVID-19 created an explosion in rapid tests with results in < 1 hour, but their relative performance characteristics are not fully understood yet. Our aim was to determine the most sensitive and specific rapid test for the diagnosis of SARS-CoV-2. METHODS: Design: Rapid review and diagnostic test accuracy network meta-analysis (DTA-NMA). ELIGIBILITY CRITERIA: Randomized controlled trials (RCTs) and observational studies assessing rapid antigen and/or rapid molecular test(s) to detect SARS-CoV-2 in participants of any age, suspected or not with SARS-CoV-2 infection. INFORMATION SOURCES: Embase, MEDLINE, and Cochrane Central Register of Controlled Trials, up to September 12, 2021. OUTCOME MEASURES: Sensitivity and specificity of rapid antigen and molecular tests suitable for detecting SARS-CoV-2. Data extraction and risk of bias assessment: Screening of literature search results was conducted by one reviewer; data abstraction was completed by one reviewer and independently verified by a second reviewer. Risk of bias was not assessed in the included studies. DATA SYNTHESIS: Random-effects meta-analysis and DTA-NMA. RESULTS: We included 93 studies (reported in 88 articles) relating to 36 rapid antigen tests in 104,961 participants and 23 rapid molecular tests in 10,449 participants. Overall, rapid antigen tests had a sensitivity of 0.75 (95% confidence interval 0.70-0.79) and specificity of 0.99 (0.98-0.99). Rapid antigen test sensitivity was higher when nasal or combined samples (e.g., combinations of nose, throat, mouth, or saliva samples) were used, but lower when nasopharyngeal samples were used, and in those classified as asymptomatic at the time of testing. Rapid molecular tests may result in fewer false negatives than rapid antigen tests (sensitivity: 0.93, 0.88-0.96; specificity: 0.98, 0.97-0.99). The tests with the highest sensitivity and specificity estimates were the Xpert Xpress rapid molecular test by Cepheid (sensitivity: 0.99, 0.83-1.00; specificity: 0.97, 0.69-1.00) among the 23 commercial rapid molecular tests and the COVID-VIRO test by AAZ-LMB (sensitivity: 0.93, 0.48-0.99; specificity: 0.98, 0.44-1.00) among the 36 rapid antigen tests we examined. CONCLUSIONS: Rapid molecular tests were associated with both high sensitivity and specificity, while rapid antigen tests were mainly associated with high specificity, according to the minimum performance requirements by WHO and Health Canada. Our rapid review was limited to English, peer-reviewed published results of commercial tests, and study risk of bias was not assessed. A full systematic review is required. REVIEW REGISTRATION: PROSPERO CRD42021289712.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Metaanálisis en Red , Sesgo , Pruebas Diagnósticas de Rutina , Sensibilidad y Especificidad , Prueba de COVID-19
7.
Cochrane Database Syst Rev ; 11: CD013652, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36394900

RESUMEN

BACKGROUND: The diagnostic challenges associated with the COVID-19 pandemic resulted in rapid development of diagnostic test methods for detecting SARS-CoV-2 infection. Serology tests to detect the presence of antibodies to SARS-CoV-2 enable detection of past infection and may detect cases of SARS-CoV-2 infection that were missed by earlier diagnostic tests. Understanding the diagnostic accuracy of serology tests for SARS-CoV-2 infection may enable development of effective diagnostic and management pathways, inform public health management decisions and understanding of SARS-CoV-2 epidemiology. OBJECTIVES: To assess the accuracy of antibody tests, firstly, to determine if a person presenting in the community, or in primary or secondary care has current SARS-CoV-2 infection according to time after onset of infection and, secondly, to determine if a person has previously been infected with SARS-CoV-2. Sources of heterogeneity investigated included: timing of test, test method, SARS-CoV-2 antigen used, test brand, and reference standard for non-SARS-CoV-2 cases. SEARCH METHODS: The COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) was searched on 30 September 2020. We included additional publications from the Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre) 'COVID-19: Living map of the evidence' and the Norwegian Institute of Public Health 'NIPH systematic and living map on COVID-19 evidence'. We did not apply language restrictions. SELECTION CRITERIA: We included test accuracy studies of any design that evaluated commercially produced serology tests, targeting IgG, IgM, IgA alone, or in combination. Studies must have provided data for sensitivity, that could be allocated to a predefined time period after onset of symptoms, or after a positive RT-PCR test. Small studies with fewer than 25 SARS-CoV-2 infection cases were excluded. We included any reference standard to define the presence or absence of SARS-CoV-2 (including reverse transcription polymerase chain reaction tests (RT-PCR), clinical diagnostic criteria, and pre-pandemic samples). DATA COLLECTION AND ANALYSIS: We use standard screening procedures with three reviewers. Quality assessment (using the QUADAS-2 tool) and numeric study results were extracted independently by two people. Other study characteristics were extracted by one reviewer and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test and, for meta-analysis, we fitted univariate random-effects logistic regression models for sensitivity by eligible time period and for specificity by reference standard group. Heterogeneity was investigated by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and summarised results for tests that were evaluated in 200 or more samples and that met a modification of UK Medicines and Healthcare products Regulatory Agency (MHRA) target performance criteria. MAIN RESULTS: We included 178 separate studies (described in 177 study reports, with 45 as pre-prints) providing 527 test evaluations. The studies included 64,688 samples including 25,724 from people with confirmed SARS-CoV-2; most compared the accuracy of two or more assays (102/178, 57%). Participants with confirmed SARS-CoV-2 infection were most commonly hospital inpatients (78/178, 44%), and pre-pandemic samples were used by 45% (81/178) to estimate specificity. Over two-thirds of studies recruited participants based on known SARS-CoV-2 infection status (123/178, 69%). All studies were conducted prior to the introduction of SARS-CoV-2 vaccines and present data for naturally acquired antibody responses. Seventy-nine percent (141/178) of studies reported sensitivity by week after symptom onset and 66% (117/178) for convalescent phase infection. Studies evaluated enzyme-linked immunosorbent assays (ELISA) (165/527; 31%), chemiluminescent assays (CLIA) (167/527; 32%) or lateral flow assays (LFA) (188/527; 36%). Risk of bias was high because of participant selection (172, 97%); application and interpretation of the index test (35, 20%); weaknesses in the reference standard (38, 21%); and issues related to participant flow and timing (148, 82%). We judged that there were high concerns about the applicability of the evidence related to participants in 170 (96%) studies, and about the applicability of the reference standard in 162 (91%) studies. Average sensitivities for current SARS-CoV-2 infection increased by week after onset for all target antibodies. Average sensitivity for the combination of either IgG or IgM was 41.1% in week one (95% CI 38.1 to 44.2; 103 evaluations; 3881 samples, 1593 cases), 74.9% in week two (95% CI 72.4 to 77.3; 96 evaluations, 3948 samples, 2904 cases) and 88.0% by week three after onset of symptoms (95% CI 86.3 to 89.5; 103 evaluations, 2929 samples, 2571 cases). Average sensitivity during the convalescent phase of infection (up to a maximum of 100 days since onset of symptoms, where reported) was 89.8% for IgG (95% CI 88.5 to 90.9; 253 evaluations, 16,846 samples, 14,183 cases), 92.9% for IgG or IgM combined (95% CI 91.0 to 94.4; 108 evaluations, 3571 samples, 3206 cases) and 94.3% for total antibodies (95% CI 92.8 to 95.5; 58 evaluations, 7063 samples, 6652 cases). Average sensitivities for IgM alone followed a similar pattern but were of a lower test accuracy in every time slot. Average specificities were consistently high and precise, particularly for pre-pandemic samples which provide the least biased estimates of specificity (ranging from 98.6% for IgM to 99.8% for total antibodies). Subgroup analyses suggested small differences in sensitivity and specificity by test technology however heterogeneity in study results, timing of sample collection, and smaller sample numbers in some groups made comparisons difficult. For IgG, CLIAs were the most sensitive (convalescent-phase infection) and specific (pre-pandemic samples) compared to both ELISAs and LFAs (P < 0.001 for differences across test methods). The antigen(s) used (whether from the Spike-protein or nucleocapsid) appeared to have some effect on average sensitivity in the first weeks after onset but there was no clear evidence of an effect during convalescent-phase infection. Investigations of test performance by brand showed considerable variation in sensitivity between tests, and in results between studies evaluating the same test. For tests that were evaluated in 200 or more samples, the lower bound of the 95% CI for sensitivity was 90% or more for only a small number of tests (IgG, n = 5; IgG or IgM, n = 1; total antibodies, n = 4). More test brands met the MHRA minimum criteria for specificity of 98% or above (IgG, n = 16; IgG or IgM, n = 5; total antibodies, n = 7). Seven assays met the specified criteria for both sensitivity and specificity. In a low-prevalence (2%) setting, where antibody testing is used to diagnose COVID-19 in people with symptoms but who have had a negative PCR test, we would anticipate that 1 (1 to 2) case would be missed and 8 (5 to 15) would be falsely positive in 1000 people undergoing IgG or IgM testing in week three after onset of SARS-CoV-2 infection. In a seroprevalence survey, where prevalence of prior infection is 50%, we would anticipate that 51 (46 to 58) cases would be missed and 6 (5 to 7) would be falsely positive in 1000 people having IgG tests during the convalescent phase (21 to 100 days post-symptom onset or post-positive PCR) of SARS-CoV-2 infection. AUTHORS' CONCLUSIONS: Some antibody tests could be a useful diagnostic tool for those in whom molecular- or antigen-based tests have failed to detect the SARS-CoV-2 virus, including in those with ongoing symptoms of acute infection (from week three onwards) or those presenting with post-acute sequelae of COVID-19. However, antibody tests have an increasing likelihood of detecting an immune response to infection as time since onset of infection progresses and have demonstrated adequate performance for detection of prior infection for sero-epidemiological purposes. The applicability of results for detection of vaccination-induced antibodies is uncertain.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , Anticuerpos Antivirales , Inmunoglobulina G , Vacunas contra la COVID-19 , Pandemias , Estudios Seroepidemiológicos , Inmunoglobulina M
8.
Diagn Progn Res ; 6(1): 18, 2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36131330

RESUMEN

The Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy (DTA) provides guidance on important aspects of conducting a test accuracy systematic review. In this paper we present TOMAS-R (Template of Multiplicity and Analysis in Systematic Reviews), a structured template to use in conjunction with current Cochrane DTA guidance, to help identify complexities in the review question and to assist planning of data extraction and analysis when clinically important variation and multiplicity is present. Examples of clinically important variation and multiplicity could include differences in participants, index tests and test methods, target conditions and reference standards used to define them, study design and methodological quality. Our TOMAS-R template goes beyond the broad topic headings in current guidance that are sources of potential variation and multiplicity, by providing prompts for common sources of heterogeneity encountered from our experience of authoring over 100 reviews. We provide examples from two reviews to assist users. The TOMAS-R template adds value by supplementing available guidance for DTA reviews by providing a tool to facilitate discussions between methodologists, clinicians, statisticians and patient/public team members to identify the full breadth of review question complexities early in the process. The use of a structured set of prompting questions at the important stage of writing the protocol ensures clinical relevance as a main focus of the review, while allowing identification of key clinical components for data extraction and later analysis thereby facilitating a more efficient review process.

10.
Cochrane Database Syst Rev ; 7: CD013705, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866452

RESUMEN

BACKGROUND: Accurate rapid diagnostic tests for SARS-CoV-2 infection would be a useful tool to help manage the COVID-19 pandemic. Testing strategies that use rapid antigen tests to detect current infection have the potential to increase access to testing, speed detection of infection, and inform clinical and public health management decisions to reduce transmission. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. We consider accuracy separately in symptomatic and asymptomatic population groups. Sources of heterogeneity investigated included setting and indication for testing, assay format, sample site, viral load, age, timing of test, and study design. SEARCH METHODS: We searched the COVID-19 Open Access Project living evidence database from the University of Bern (which includes daily updates from PubMed and Embase and preprints from medRxiv and bioRxiv) on 08 March 2021. We included independent evaluations from national reference laboratories, FIND and the Diagnostics Global Health website. We did not apply language restrictions. SELECTION CRITERIA: We included studies of people with either suspected SARS-CoV-2 infection, known SARS-CoV-2 infection or known absence of infection, or those who were being screened for infection. We included test accuracy studies of any design that evaluated commercially produced, rapid antigen tests. We included evaluations of single applications of a test (one test result reported per person) and evaluations of serial testing (repeated antigen testing over time). Reference standards for presence or absence of infection were any laboratory-based molecular test (primarily reverse transcription polymerase chain reaction (RT-PCR)) or pre-pandemic respiratory sample. DATA COLLECTION AND ANALYSIS: We used standard screening procedures with three people. Two people independently carried out quality assessment (using the QUADAS-2 tool) and extracted study results. Other study characteristics were extracted by one review author and checked by a second. We present sensitivity and specificity with 95% confidence intervals (CIs) for each test, and pooled data using the bivariate model. We investigated heterogeneity by including indicator variables in the random-effects logistic regression models. We tabulated results by test manufacturer and compliance with manufacturer instructions for use and according to symptom status. MAIN RESULTS: We included 155 study cohorts (described in 166 study reports, with 24 as preprints). The main results relate to 152 evaluations of single test applications including 100,462 unique samples (16,822 with confirmed SARS-CoV-2). Studies were mainly conducted in Europe (101/152, 66%), and evaluated 49 different commercial antigen assays. Only 23 studies compared two or more brands of test. Risk of bias was high because of participant selection (40, 26%); interpretation of the index test (6, 4%); weaknesses in the reference standard for absence of infection (119, 78%); and participant flow and timing 41 (27%). Characteristics of participants (45, 30%) and index test delivery (47, 31%) differed from the way in which and in whom the test was intended to be used. Nearly all studies (91%) used a single RT-PCR result to define presence or absence of infection. The 152 studies of single test applications reported 228 evaluations of antigen tests. Estimates of sensitivity varied considerably between studies, with consistently high specificities. Average sensitivity was higher in symptomatic (73.0%, 95% CI 69.3% to 76.4%; 109 evaluations; 50,574 samples, 11,662 cases) compared to asymptomatic participants (54.7%, 95% CI 47.7% to 61.6%; 50 evaluations; 40,956 samples, 2641 cases). Average sensitivity was higher in the first week after symptom onset (80.9%, 95% CI 76.9% to 84.4%; 30 evaluations, 2408 cases) than in the second week of symptoms (53.8%, 95% CI 48.0% to 59.6%; 40 evaluations, 1119 cases). For those who were asymptomatic at the time of testing, sensitivity was higher when an epidemiological exposure to SARS-CoV-2 was suspected (64.3%, 95% CI 54.6% to 73.0%; 16 evaluations; 7677 samples, 703 cases) compared to where COVID-19 testing was reported to be widely available to anyone on presentation for testing (49.6%, 95% CI 42.1% to 57.1%; 26 evaluations; 31,904 samples, 1758 cases). Average specificity was similarly high for symptomatic (99.1%) or asymptomatic (99.7%) participants. We observed a steady decline in summary sensitivities as measures of sample viral load decreased. Sensitivity varied between brands. When tests were used according to manufacturer instructions, average sensitivities by brand ranged from 34.3% to 91.3% in symptomatic participants (20 assays with eligible data) and from 28.6% to 77.8% for asymptomatic participants (12 assays). For symptomatic participants, summary sensitivities for seven assays were 80% or more (meeting acceptable criteria set by the World Health Organization (WHO)). The WHO acceptable performance criterion of 97% specificity was met by 17 of 20 assays when tests were used according to manufacturer instructions, 12 of which demonstrated specificities above 99%. For asymptomatic participants the sensitivities of only two assays approached but did not meet WHO acceptable performance standards in one study each; specificities for asymptomatic participants were in a similar range to those observed for symptomatic people. At 5% prevalence using summary data in symptomatic people during the first week after symptom onset, the positive predictive value (PPV) of 89% means that 1 in 10 positive results will be a false positive, and around 1 in 5 cases will be missed. At 0.5% prevalence using summary data for asymptomatic people, where testing was widely available and where epidemiological exposure to COVID-19 was suspected, resulting PPVs would be 38% to 52%, meaning that between 2 in 5 and 1 in 2 positive results will be false positives, and between 1 in 2 and 1 in 3 cases will be missed. AUTHORS' CONCLUSIONS: Antigen tests vary in sensitivity. In people with signs and symptoms of COVID-19, sensitivities are highest in the first week of illness when viral loads are higher. Assays that meet appropriate performance standards, such as those set by WHO, could replace laboratory-based RT-PCR when immediate decisions about patient care must be made, or where RT-PCR cannot be delivered in a timely manner. However, they are more suitable for use as triage to RT-PCR testing. The variable sensitivity of antigen tests means that people who test negative may still be infected. Many commercially available rapid antigen tests have not been evaluated in independent validation studies. Evidence for testing in asymptomatic cohorts has increased, however sensitivity is lower and there is a paucity of evidence for testing in different settings. Questions remain about the use of antigen test-based repeat testing strategies. Further research is needed to evaluate the effectiveness of screening programmes at reducing transmission of infection, whether mass screening or targeted approaches including schools, healthcare setting and traveller screening.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Prueba de COVID-19 , Humanos , Pandemias , Sistemas de Atención de Punto , SARS-CoV-2 , Sensibilidad y Especificidad
11.
Cochrane Database Syst Rev ; 5: CD013639, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575286

RESUMEN

BACKGROUND: Our March 2021 edition of this review showed thoracic imaging computed tomography (CT) to be sensitive and moderately specific in diagnosing COVID-19 pneumonia. This new edition is an update of the review. OBJECTIVES: Our objectives were to evaluate the diagnostic accuracy of thoracic imaging in people with suspected COVID-19; assess the rate of positive imaging in people who had an initial reverse transcriptase polymerase chain reaction (RT-PCR) negative result and a positive RT-PCR result on follow-up; and evaluate the accuracy of thoracic imaging for screening COVID-19 in asymptomatic individuals. The secondary objective was to assess threshold effects of index test positivity on accuracy. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 17 February 2021. We did not apply any language restrictions. SELECTION CRITERIA: We included diagnostic accuracy studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19. Studies had to assess chest CT, chest X-ray, or ultrasound of the lungs for the diagnosis of COVID-19, use a reference standard that included RT-PCR, and report estimates of test accuracy or provide data from which we could compute estimates. We excluded studies that used imaging as part of the reference standard and studies that excluded participants with normal index test results. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using QUADAS-2. We presented sensitivity and specificity per study on paired forest plots, and summarized pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. MAIN RESULTS: We included 98 studies in this review. Of these, 94 were included for evaluating the diagnostic accuracy of thoracic imaging in the evaluation of people with suspected COVID-19. Eight studies were included for assessing the rate of positive imaging in individuals with initial RT-PCR negative results and positive RT-PCR results on follow-up, and 10 studies were included for evaluating the accuracy of thoracic imaging for imagining asymptomatic individuals. For all 98 included studies, risk of bias was high or unclear in 52 (53%) studies with respect to participant selection, in 64 (65%) studies with respect to reference standard, in 46 (47%) studies with respect to index test, and in 48 (49%) studies with respect to flow and timing. Concerns about the applicability of the evidence to: participants were high or unclear in eight (8%) studies; index test were high or unclear in seven (7%) studies; and reference standard were high or unclear in seven (7%) studies. Imaging in people with suspected COVID-19 We included 94 studies. Eighty-seven studies evaluated one imaging modality, and seven studies evaluated two imaging modalities. All studies used RT-PCR alone or in combination with other criteria (for example, clinical signs and symptoms, positive contacts) as the reference standard for the diagnosis of COVID-19. For chest CT (69 studies, 28285 participants, 14,342 (51%) cases), sensitivities ranged from 45% to 100%, and specificities from 10% to 99%. The pooled sensitivity of chest CT was 86.9% (95% confidence interval (CI) 83.6 to 89.6), and pooled specificity was 78.3% (95% CI 73.7 to 82.3). Definition for index test positivity was a source of heterogeneity for sensitivity, but not specificity. Reference standard was not a source of heterogeneity. For chest X-ray (17 studies, 8529 participants, 5303 (62%) cases), the sensitivity ranged from 44% to 94% and specificity from 24 to 93%. The pooled sensitivity of chest X-ray was 73.1% (95% CI 64. to -80.5), and pooled specificity was 73.3% (95% CI 61.9 to 82.2). Definition for index test positivity was not found to be a source of heterogeneity. Definition for index test positivity and reference standard were not found to be sources of heterogeneity. For ultrasound of the lungs (15 studies, 2410 participants, 1158 (48%) cases), the sensitivity ranged from 73% to 94% and the specificity ranged from 21% to 98%. The pooled sensitivity of ultrasound was 88.9% (95% CI 84.9 to 92.0), and the pooled specificity was 72.2% (95% CI 58.8 to 82.5). Definition for index test positivity and reference standard were not found to be sources of heterogeneity. Indirect comparisons of modalities evaluated across all 94 studies indicated that chest CT and ultrasound gave higher sensitivity estimates than X-ray (P = 0.0003 and P = 0.001, respectively). Chest CT and ultrasound gave similar sensitivities (P=0.42). All modalities had similar specificities (CT versus X-ray P = 0.36; CT versus ultrasound P = 0.32; X-ray versus ultrasound P = 0.89). Imaging in PCR-negative people who subsequently became positive For rate of positive imaging in individuals with initial RT-PCR negative results, we included 8 studies (7 CT, 1 ultrasound) with a total of 198 participants suspected of having COVID-19, all of whom had a final diagnosis of COVID-19. Most studies (7/8) evaluated CT. Of 177 participants with initially negative RT-PCR who had positive RT-PCR results on follow-up testing, 75.8% (95% CI 45.3 to 92.2) had positive CT findings. Imaging in asymptomatic PCR-positive people For imaging asymptomatic individuals, we included 10 studies (7 CT, 1 X-ray, 2 ultrasound) with a total of 3548 asymptomatic participants, of whom 364 (10%) had a final diagnosis of COVID-19. For chest CT (7 studies, 3134 participants, 315 (10%) cases), the pooled sensitivity was 55.7% (95% CI 35.4 to 74.3) and the pooled specificity was 91.1% (95% CI 82.6 to 95.7). AUTHORS' CONCLUSIONS: Chest CT and ultrasound of the lungs are sensitive and moderately specific in diagnosing COVID-19. Chest X-ray is moderately sensitive and moderately specific in diagnosing COVID-19. Thus, chest CT and ultrasound may have more utility for ruling out COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. The uncertainty resulting from high or unclear risk of bias and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X , Ultrasonografía
12.
Cochrane Database Syst Rev ; 5: CD013665, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35593186

RESUMEN

BACKGROUND: COVID-19 illness is highly variable, ranging from infection with no symptoms through to pneumonia and life-threatening consequences. Symptoms such as fever, cough, or loss of sense of smell (anosmia) or taste (ageusia), can help flag early on if the disease is present. Such information could be used either to rule out COVID-19 disease, or to identify people who need to go for COVID-19 diagnostic tests. This is the second update of this review, which was first published in 2020. OBJECTIVES: To assess the diagnostic accuracy of signs and symptoms to determine if a person presenting in primary care or to hospital outpatient settings, such as the emergency department or dedicated COVID-19 clinics, has COVID-19. SEARCH METHODS: We undertook electronic searches up to 10 June 2021 in the University of Bern living search database. In addition, we checked repositories of COVID-19 publications. We used artificial intelligence text analysis to conduct an initial classification of documents. We did not apply any language restrictions. SELECTION CRITERIA: Studies were eligible if they included people with clinically suspected COVID-19, or recruited known cases with COVID-19 and also controls without COVID-19 from a single-gate cohort. Studies were eligible when they recruited people presenting to primary care or hospital outpatient settings. Studies that included people who contracted SARS-CoV-2 infection while admitted to hospital were not eligible. The minimum eligible sample size of studies was 10 participants. All signs and symptoms were eligible for this review, including individual signs and symptoms or combinations. We accepted a range of reference standards. DATA COLLECTION AND ANALYSIS: Pairs of review authors independently selected all studies, at both title and abstract, and full-text stage. They resolved any disagreements by discussion with a third review author. Two review authors independently extracted data and assessed risk of bias using the QUADAS-2 checklist, and resolved disagreements by discussion with a third review author. Analyses were restricted to prospective studies only. We presented sensitivity and specificity in paired forest plots, in receiver operating characteristic (ROC) space and in dumbbell plots. We estimated summary parameters using a bivariate random-effects meta-analysis whenever five or more primary prospective studies were available, and whenever heterogeneity across studies was deemed acceptable. MAIN RESULTS: We identified 90 studies; for this update we focused on the results of 42 prospective studies with 52,608 participants. Prevalence of COVID-19 disease varied from 3.7% to 60.6% with a median of 27.4%. Thirty-five studies were set in emergency departments or outpatient test centres (46,878 participants), three in primary care settings (1230 participants), two in a mixed population of in- and outpatients in a paediatric hospital setting (493 participants), and two overlapping studies in nursing homes (4007 participants). The studies did not clearly distinguish mild COVID-19 disease from COVID-19 pneumonia, so we present the results for both conditions together. Twelve studies had a high risk of bias for selection of participants because they used a high level of preselection to decide whether reverse transcription polymerase chain reaction (RT-PCR) testing was needed, or because they enrolled a non-consecutive sample, or because they excluded individuals while they were part of the study base. We rated 36 of the 42 studies as high risk of bias for the index tests because there was little or no detail on how, by whom and when, the symptoms were measured. For most studies, eligibility for testing was dependent on the local case definition and testing criteria that were in effect at the time of the study, meaning most people who were included in studies had already been referred to health services based on the symptoms that we are evaluating in this review. The applicability of the results of this review iteration improved in comparison with the previous reviews. This version has more studies of people presenting to ambulatory settings, which is where the majority of assessments for COVID-19 take place. Only three studies presented any data on children separately, and only one focused specifically on older adults. We found data on 96 symptoms or combinations of signs and symptoms. Evidence on individual signs as diagnostic tests was rarely reported, so this review reports mainly on the diagnostic value of symptoms. Results were highly variable across studies. Most had very low sensitivity and high specificity. RT-PCR was the most often used reference standard (40/42 studies). Only cough (11 studies) had a summary sensitivity above 50% (62.4%, 95% CI 50.6% to 72.9%)); its specificity was low (45.4%, 95% CI 33.5% to 57.9%)). Presence of fever had a sensitivity of 37.6% (95% CI 23.4% to 54.3%) and a specificity of 75.2% (95% CI 56.3% to 87.8%). The summary positive likelihood ratio of cough was 1.14 (95% CI 1.04 to 1.25) and that of fever 1.52 (95% CI 1.10 to 2.10). Sore throat had a summary positive likelihood ratio of 0.814 (95% CI 0.714 to 0.929), which means that its presence increases the probability of having an infectious disease other than COVID-19. Dyspnoea (12 studies) and fatigue (8 studies) had a sensitivity of 23.3% (95% CI 16.4% to 31.9%) and 40.2% (95% CI 19.4% to 65.1%) respectively. Their specificity was 75.7% (95% CI 65.2% to 83.9%) and 73.6% (95% CI 48.4% to 89.3%). The summary positive likelihood ratio of dyspnoea was 0.96 (95% CI 0.83 to 1.11) and that of fatigue 1.52 (95% CI 1.21 to 1.91), which means that the presence of fatigue slightly increases the probability of having COVID-19. Anosmia alone (7 studies), ageusia alone (5 studies), and anosmia or ageusia (6 studies) had summary sensitivities below 50% but summary specificities over 90%. Anosmia had a summary sensitivity of 26.4% (95% CI 13.8% to 44.6%) and a specificity of 94.2% (95% CI 90.6% to 96.5%). Ageusia had a summary sensitivity of 23.2% (95% CI 10.6% to 43.3%) and a specificity of 92.6% (95% CI 83.1% to 97.0%). Anosmia or ageusia had a summary sensitivity of 39.2% (95% CI 26.5% to 53.6%) and a specificity of 92.1% (95% CI 84.5% to 96.2%). The summary positive likelihood ratios of anosmia alone and anosmia or ageusia were 4.55 (95% CI 3.46 to 5.97) and 4.99 (95% CI 3.22 to 7.75) respectively, which is just below our arbitrary definition of a 'red flag', that is, a positive likelihood ratio of at least 5. The summary positive likelihood ratio of ageusia alone was 3.14 (95% CI 1.79 to 5.51). Twenty-four studies assessed combinations of different signs and symptoms, mostly combining olfactory symptoms. By combining symptoms with other information such as contact or travel history, age, gender, and a local recent case detection rate, some multivariable prediction scores reached a sensitivity as high as 90%. AUTHORS' CONCLUSIONS: Most individual symptoms included in this review have poor diagnostic accuracy. Neither absence nor presence of symptoms are accurate enough to rule in or rule out the disease. The presence of anosmia or ageusia may be useful as a red flag for the presence of COVID-19. The presence of cough also supports further testing. There is currently no evidence to support further testing with PCR in any individuals presenting only with upper respiratory symptoms such as sore throat, coryza or rhinorrhoea. Combinations of symptoms with other readily available information such as contact or travel history, or the local recent case detection rate may prove more useful and should be further investigated in an unselected population presenting to primary care or hospital outpatient settings. The diagnostic accuracy of symptoms for COVID-19 is moderate to low and any testing strategy using symptoms as selection mechanism will result in both large numbers of missed cases and large numbers of people requiring testing. Which one of these is minimised, is determined by the goal of COVID-19 testing strategies, that is, controlling the epidemic by isolating every possible case versus identifying those with clinically important disease so that they can be monitored or treated to optimise their prognosis. The former will require a testing strategy that uses very few symptoms as entry criterion for testing, the latter could focus on more specific symptoms such as fever and anosmia.


Asunto(s)
Ageusia , COVID-19 , Faringitis , Anciano , Ageusia/complicaciones , Anosmia/diagnóstico , Anosmia/etiología , Inteligencia Artificial , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Niño , Tos/etiología , Disnea , Fatiga/etiología , Fiebre/diagnóstico , Fiebre/etiología , Hospitales , Humanos , Pacientes Ambulatorios , Atención Primaria de Salud , Estudios Prospectivos , SARS-CoV-2 , Sensibilidad y Especificidad
14.
Semin Arthritis Rheum ; 52: 151919, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34782180

RESUMEN

OBJECTIVE: To estimate and compare the diagnostic accuracy of magnetic resonance imaging (MRI) and ultrasound, for the prediction of rheumatoid arthritis (RA) in unclassified arthritis (UA). METHODS: MEDLINE, Embase and BIOSIS were searched from 1987 to May 2019. Studies evaluating any imaging test in participants with UA were eligible. Reference standards were RA classification criteria or methotrexate initiation. Two authors independently extracted data and assessed validity using QUADAS-2. Sensitivities and specificities were calculated for each imaging characteristic and joint area. Summary estimates with 95% confidence intervals (CI) were estimated where possible. RESULTS: Nineteen studies were included; 13 evaluated MRI (n=1,143; 454 with RA) and 6 evaluated ultrasound (n=531; 205 with RA). Studies were limited by unclear recruitment procedures, inclusion of patients with RA at baseline, differential verification, lack of blinding and consensus grading. Study heterogeneity largely precluded meta-analysis, however summary sensitivity and specificity for MRI synovitis in at least one joint were 93% (95% CI 88%, 96%) and 25% (95% CI 13%, 41%) (3 studies). Specificities may be higher for other MRI characteristics but data are limited. Ultrasound results were difficult to synthesise due to different diagnostic thresholds and reference standards. CONCLUSION: The evidence for MRI or ultrasound as single tests for predicting RA in people with UA is heterogeneous and of variable methodological quality. Larger studies using consensus grading and consistently defined RA diagnosis are needed to identify whether combinations of imaging characteristics, either alone or in combination with other clinical findings, can better predict RA in this population.


Asunto(s)
Artritis Reumatoide , Sinovitis , Artritis Reumatoide/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad , Sinovitis/diagnóstico por imagen , Ultrasonografía
15.
Ann Intern Med ; 174(11): 1592-1599, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34698503

RESUMEN

Comparative diagnostic test accuracy studies assess and compare the accuracy of 2 or more tests in the same study. Although these studies have the potential to yield reliable evidence regarding comparative accuracy, shortcomings in the design, conduct, and analysis may bias their results. The currently recommended quality assessment tool for diagnostic test accuracy studies, QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2), is not designed for the assessment of test comparisons. The QUADAS-C (Quality Assessment of Diagnostic Accuracy Studies-Comparative) tool was developed as an extension of QUADAS-2 to assess the risk of bias in comparative diagnostic test accuracy studies. Through a 4-round Delphi study involving 24 international experts in test evaluation and a face-to-face consensus meeting, an initial version of the tool was developed that was revised and finalized following a pilot study among potential users. The QUADAS-C tool retains the same 4-domain structure of QUADAS-2 (Patient Selection, Index Test, Reference Standard, and Flow and Timing) and comprises additional questions to each QUADAS-2 domain. A risk-of-bias judgment for comparative accuracy requires a risk-of-bias judgment for the accuracy of each test (resulting from QUADAS-2) and additional criteria specific to test comparisons. Examples of such additional criteria include whether participants either received all index tests or were randomly assigned to index tests, and whether index tests were interpreted with blinding to the results of other index tests. The QUADAS-C tool will be useful for systematic reviews of diagnostic test accuracy addressing comparative questions. Furthermore, researchers may use this tool to identify and avoid risk of bias when designing a comparative diagnostic test accuracy study.


Asunto(s)
Sesgo , Diagnóstico , Garantía de la Calidad de Atención de Salud , Literatura de Revisión como Asunto , Encuestas y Cuestionarios , Medicina Basada en la Evidencia , Humanos
17.
20.
Cochrane Database Syst Rev ; 3: CD013639, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724443

RESUMEN

BACKGROUND: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Our 2020 edition of this review showed thoracic (chest) imaging to be sensitive and moderately specific in the diagnosis of coronavirus disease 2019 (COVID-19). In this update, we include new relevant studies, and have removed studies with case-control designs, and those not intended to be diagnostic test accuracy studies. OBJECTIVES: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 30 September 2020. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19 and that reported estimates of test accuracy or provided data from which we could compute estimates. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using the QUADAS-2 domain-list. We presented the results of estimated sensitivity and specificity using paired forest plots, and we summarised pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. We presented the uncertainty of accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 51 studies with 19,775 participants suspected of having COVID-19, of whom 10,155 (51%) had a final diagnosis of COVID-19. Forty-seven studies evaluated one imaging modality each, and four studies evaluated two imaging modalities each. All studies used RT-PCR as the reference standard for the diagnosis of COVID-19, with 47 studies using only RT-PCR and four studies using a combination of RT-PCR and other criteria (such as clinical signs, imaging tests, positive contacts, and follow-up phone calls) as the reference standard. Studies were conducted in Europe (33), Asia (13), North America (3) and South America (2); including only adults (26), all ages (21), children only (1), adults over 70 years (1), and unclear (2); in inpatients (2), outpatients (32), and setting unclear (17). Risk of bias was high or unclear in thirty-two (63%) studies with respect to participant selection, 40 (78%) studies with respect to reference standard, 30 (59%) studies with respect to index test, and 24 (47%) studies with respect to participant flow. For chest CT (41 studies, 16,133 participants, 8110 (50%) cases), the sensitivity ranged from 56.3% to 100%, and specificity ranged from 25.4% to 97.4%. The pooled sensitivity of chest CT was 87.9% (95% CI 84.6 to 90.6) and the pooled specificity was 80.0% (95% CI 74.9 to 84.3). There was no statistical evidence indicating that reference standard conduct and definition for index test positivity were sources of heterogeneity for CT studies. Nine chest CT studies (2807 participants, 1139 (41%) cases) used the COVID-19 Reporting and Data System (CO-RADS) scoring system, which has five thresholds to define index test positivity. At a CO-RADS threshold of 5 (7 studies), the sensitivity ranged from 41.5% to 77.9% and the pooled sensitivity was 67.0% (95% CI 56.4 to 76.2); the specificity ranged from 83.5% to 96.2%; and the pooled specificity was 91.3% (95% CI 87.6 to 94.0). At a CO-RADS threshold of 4 (7 studies), the sensitivity ranged from 56.3% to 92.9% and the pooled sensitivity was 83.5% (95% CI 74.4 to 89.7); the specificity ranged from 77.2% to 90.4% and the pooled specificity was 83.6% (95% CI 80.5 to 86.4). For chest X-ray (9 studies, 3694 participants, 2111 (57%) cases) the sensitivity ranged from 51.9% to 94.4% and specificity ranged from 40.4% to 88.9%. The pooled sensitivity of chest X-ray was 80.6% (95% CI 69.1 to 88.6) and the pooled specificity was 71.5% (95% CI 59.8 to 80.8). For ultrasound of the lungs (5 studies, 446 participants, 211 (47%) cases) the sensitivity ranged from 68.2% to 96.8% and specificity ranged from 21.3% to 78.9%. The pooled sensitivity of ultrasound was 86.4% (95% CI 72.7 to 93.9) and the pooled specificity was 54.6% (95% CI 35.3 to 72.6). Based on an indirect comparison using all included studies, chest CT had a higher specificity than ultrasound. For indirect comparisons of chest CT and chest X-ray, or chest X-ray and ultrasound, the data did not show differences in specificity or sensitivity. AUTHORS' CONCLUSIONS: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19. Chest X-ray is moderately sensitive and moderately specific for the diagnosis of COVID-19. Ultrasound is sensitive but not specific for the diagnosis of COVID-19. Thus, chest CT and ultrasound may have more utility for excluding COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest in the same participant population, and implement improved reporting practices.


Asunto(s)
COVID-19/diagnóstico por imagen , Radiografía Torácica , Tomografía Computarizada por Rayos X , Ultrasonografía , Adolescente , Adulto , Anciano , Sesgo , Prueba de Ácido Nucleico para COVID-19/normas , Niño , Intervalos de Confianza , Humanos , Pulmón/diagnóstico por imagen , Persona de Mediana Edad , Radiografía Torácica/normas , Radiografía Torácica/estadística & datos numéricos , Estándares de Referencia , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/normas , Tomografía Computarizada por Rayos X/estadística & datos numéricos , Ultrasonografía/normas , Ultrasonografía/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...